The multiple contributions of phytochromes to the control of internode elongation in rice.
نویسندگان
چکیده
Although phyAphyBphyC phytochrome-null mutants in rice (Oryza sativa) have morphological changes and exhibit internode elongation, even as seedlings, it is unknown how phytochromes contribute to the control of internode elongation. A gene for 1-aminocyclopropane-1-carboxylate oxidase (ACO1), which is an ethylene biosynthesis gene contributing to internode elongation, was up-regulated in phyAphyBphyC seedlings. ACO1 expression was controlled mainly by phyA and phyB, and a histochemical analysis showed that ACO1 expression was localized to the basal parts of leaf sheaths of phyAphyBphyC seedlings, similar to mature wild-type plants at the heading stage, when internode elongation was greatly promoted. In addition, the transcription levels of several ethylene- or gibberellin (GA)-related genes were changed in phyAphyBphyC mutants, and measurement of the plant hormone levels indicated low ethylene production and bioactive GA levels in the phyAphyBphyC mutants. We demonstrate that ethylene induced internode elongation and ACO1 expression in phyAphyBphyC seedlings but not in the wild type and that the presence of bioactive GAs was necessary for these effects. These findings indicate that phytochromes contribute to multiple steps in the control of internode elongation, such as the expression of the GA biosynthesis gene OsGA3ox2, ACO1 expression, and the onset of internode elongation.
منابع مشابه
QTL analysis of internode elongation in response to gibberellin in deepwater rice
Gibberellin (GA) is a plant hormone that has important roles in numerous plant developmental phases. Rice plants known as deepwater rice respond to flooding by elongating their internodes to avoid anoxia. Previous studies reported that GA is essential for internode elongation in deepwater rice. Quantitative trait locus (QTL) analyses identified QTLs regulating internode elongation in response t...
متن کاملGibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice
Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investiga...
متن کاملارزیابی ویژگیهای مورفولوژیک و صفات مرتبط با خوابیدگی بوته در ارقام اصلاحشده برنج (Oryza sativa L.)
In order to evaluate the morphological characteristics and lodging-related traits and comparison of improved cultivars of rice plant resistance to lodging, a field experiment was carried out in randomized complete block design with three replications in 2012 at the Rice Research Institute of Iran )Rasht(. Rice cultivars were Kadus, Khazar, Gohar, Dorfak, Sepidrood and Deylam and local rice cult...
متن کاملAnalysis of the Physicochemical Properties and Grain Yield of Some Rice Promising Lines From Multiple Crosses
Grain quality currently represents a major problem in high yielding rice production in Iran and many other rice producing areas of the world. Quality assessment of rice involves the function of sensory tests and physicochemical determinations based on the chemical composition, cooking quality, gelatinization temperature and physical properties of cooked rice. These research genetic materials we...
متن کاملTwo novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage
Deepwater rice possesses internode elongation ability to avoid drowning under deepwater conditions. Previous studies identified three QTLs regulating internode elongation ability on chromosomes 1, 3 and 12 using different populations. However, these QTLs only induce internode elongation in response to deepwater conditions from the 7-leaf stage and not during the early leaf stage. In this study,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 157 3 شماره
صفحات -
تاریخ انتشار 2011